Part Number Hot Search : 
SMF85C B350A11 RT2800 2650FD15 R2016 SC1602 LTM4639 BD638
Product Description
Full Text Search
 

To Download GA150TD120U Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 PD - 5.067A
PRELIMINARY
GA150TD120U
Ultra-FastTM Speed IGBT
VCES = 1200V VCE(on) typ. = 2.4V
@VGE = 15V, IC = 150A
"HALF-BRIDGE" IGBT DOUBLE INT-A-PAK
Features
* Generation 4 IGBT technology * Standard: Optimized for minimum saturation voltage and operating frequencies up to 10kHz * Very low conduction and switching losses * HEXFREDTM antiparallel diodes with ultra- soft recovery * Industry standard package * UL approved
Benefits
* Increased operating efficiency * Direct mounting to heatsink * Performance optimized for power conversion: UPS, SMPS, Welding * Lower EMI, requires less snubbing
Absolute Maximum Ratings
Parameter
VCES IC @ TC = 25C I CM ILM IFM VGE VISOL PD @ TC = 25C PD @ TC = 85C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Pulsed Collector Current Peak Switching Current Peak Diode Forward Current Gate-to-Emitter Voltage RMS Isolation Voltage, Any Terminal To Case, t = 1 min Maximum Power Dissipation Maximum Power Dissipation Operating Junction Temperature Range Storage Temperature Range
Max.
1200 150 300 300 300 20 2500 780 406 -40 to +150 -40 to +125
Units
V A
V W C
Thermal / Mechanical Characteristics
Parameter
RJC RJC RCS Thermal Resistance, Junction-to-Case - IGBT Thermal Resistance, Junction-to-Case - Diode Thermal Resistance, Case-to-Sink - Module Mounting Torque, Case-to-Heatsink Mounting Torque, Case-to-Terminal 1, 2 & 3 Weight of Module
Typ.
-- -- 0.1 -- -- 400
Max.
0.16 0.20 -- 4.0 3.0 --
Units
C/W N. m g
www.irf.com
1
3/20/98
GA150TD120U
Electrical Characteristics @ TJ = 25C (unless otherwise specified)
V(BR)CES VCE(on) Parameter Min. Collector-to-Emitter Breakdown Voltage 1200 Collector-to-Emitter Voltage -- -- VGE(th) Gate Threshold Voltage 3.0 V GE(th)/T J Temperature Coeff. of Threshold Voltage -- gfe Forward Transconductance -- ICES Collector-to-Emitter Leaking Current -- -- Diode Forward Voltage - Maximum -- VFM -- IGES Gate-to-Emitter Leakage Current -- Typ. Max. Units Conditions -- -- VGE = 0V, IC = 1mA 2.4 2.9 VGE = 15V, IC = 150A 2.2 -- V VGE = 15V, IC = 150A, TJ = 125C -- 6.0 IC = 1.75 mA -11 -- mV/C VCE = VGE, IC = 1.75mA 201 -- S VCE = 25V, IC = 150A -- 2 mA VGE = 0V, VCE = 1200V -- 20 VGE = 0V, VCE = 1200V, TJ = 125C 2.7 3.5 V IF = 150A, VGE = 0V 2.6 -- IF = 150A, VGE = 0V, TJ = 125C -- 500 nA VGE = 20V
Dynamic Characteristics - TJ = 125C (unless otherwise specified)
Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets Cies Coes Cres t rr I rr Q rr di(rec)M/dt Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Energy Turn-Off Switching Energy Total Switching Energy Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Diode Peak ReverseCurrent Diode Recovery Charge Diode Peak Rate of Fall of Recovery During tb Min. -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Typ. 1139 192 377 414 208 552 342 29 32 61 25630 1139 221 186 133 12381 2524 Max. Units Conditions 1709 VCC = 400V, VGE = 15V 288 nC IC = 171A 566 TJ = 25C -- RG1 = 15, RG2 = 0 -- ns IC = 150A -- VCC = 720V -- VGE = 15V -- mJ See Fig.17 through Fig.21 -- 90 -- VGE = 0V -- pF VCC = 30V -- = 1 MHz -- ns IC = 150A -- A RG1= 15 -- nC RG2 = 0 -- A/s VCC = 720V di/dt=1260A/s
Details of note through are on the last page
2
www.irf.com
GA150TD120U
120
F or b oth:
100
Load Current ( A ) LOAD CURRENT (A)
D uty c y c le : 50 % T J = 12 5 C T sink = 90 C G a te d riv e a s s pe c ified
P ow er D is s ipation = 134 W S q u a re w a v e:
80
60
60% of rated v oltage
I
40
20
Ide a l d io d e s
0 0.1 1 10 100
f, Frequency (KHz)
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
1000
1000
I C , Collector-to-Emitter Current (A)
I C , Collector-to-Emitter Current (A)
TJ = 125 C
100
100
TJ = 125 C TJ = 25 C
TJ = 25 C
10
10 1.0
V GE = 15V 80s PULSE WIDTH
1.5 2.0 2.5 3.0
1 5 6
V CC = 25V 50V 5s PULSE WIDTH
7 8
VCE , Collector-to-Emitter Voltage (V)
VGE , Gate-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
Fig. 3 - Typical Transfer Characteristics
www.irf.com
3
GA150TD120U
200 4.0
150
VCE , Collector-to-Emitter Voltage(V)
VGE = 15V 80 us PULSE WIDTH
Maximum DC Collector Current(A)
3.0
IC = 300 A
100
IC = 150 A
2.0
IC = 75 A
50
0 25 50 75 100 125 150
1.0 -60 -40 -20
0
20
40
60
80 100 120 140 160
TC , Case Temperature ( C)
TJ , Junction Temperature (( C ) C)
Fig. 4 - Maximum Collector Current vs. Case Temperature
Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature
1
T he rm a l R e sp on s e (Zth JC )
0.1
D = 0.50
P DM
0.20 0.10 0.05 0.02 0.01
0.01 0.0001
t 1 t2
S IN G LE P U LS E (TH E R M A L R E S P O N S E )
0.001 0.01 0.1 1
Notes: 1. Duty factor D = t 1 / t 2 2. Peak TJ = PDM x Z thJC + TC
A
1000
10
100
t 1 , R e cta n g u la r P u ls e D u ra tio n (se c)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
GA150TD120U
50000
40000
VGE , Gate-to-Emitter Voltage (V)
VGE = 0V, f = 1MHz Cies = Cge + Cgc , Cce SHORTED Cres = Cgc Coes = Cce + Cgc
20
VCC = 400V I C = 171A
C, Capacitance (pF)
C ies
30000
15
10
20000
C oes Cres
5
10000
0 1 10 100
0 0 200 400 600 800 1000 1200
VCE , Collector-to-Emitter Voltage (V)
Q G , Total Gate Charge (nC)
Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage
Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage
100
Total Switching Losses (mJ)
Total Switching Losses (mJ)
V CC V GE TJ 90 I C
= 720V = 15V = 125 C 25 = 150A
1000
15 RG =15;RG2 = 0 G1 = 15Ohm VGE = 15V VCC = 720V 960V
80
IC = 300 A
100
IC = 150 A IC = 75 A
70
60
50 0 10 20 30 40 50
10 -60 -40 -20
0
20
40
60
80 100 120 140 160
RG , Gate Resistance (Ohm) ()
RG , Gate Resistance ( )
TJ , Junction Temperature ( C )
Fig. 9 - Typical Switching Losses vs. Gate Resistance
Fig. 10 - Typical Switching Losses vs. Junction Temperature
www.irf.com
5
GA150TD120U
150
RG1=15;RG2 = 0 RG = 15Ohm
400
IC , Collector Current ( A )
Total Switching Losses (mJ)
T J = 150 C VCC = 720V 125 VGE = 15V
100
V G E = 20V T J = 125C V C E m easured at term inal (Peak Voltage)
300
SAFE OPERATING AREA
200
75
50
100
25
0 0 50 100 150 200 250 300 350
0 0 200 400 600 800 1000 1200
A
1400
I C , Collector Current (A)
VCE , Collector-to-Em itter Voltage (V)
Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current
25000
Fig. 12 - Reverse Bias SOA
1000
IF = 300A
Instantaneous Forward Current - IF ( A )
IF = 150A
20000
IF = 75A
15000
100
T = 1 25C J T= J 25 C
QRR - ( nC)
10000
5000
V R = 7 20V T J = 1 2 5 C T J = 2 5 C
10 1.0 2.0 3.0 4.0
0 500
800
F o rwa rd Vo lta g e D ro p - V FM ) (V
di f /dt - (A/ s )
1100
1400
1700
2000
Fig. 13 - Typical Forward Voltage Drop vs. Instantaneous Forward Current
Fig. 14 - Typical Stored Charge vs. dif/dt
6
www.irf.com
GA150TD120U
400 250
IF = 300A IF = 150A IF = 75A
300 200
I F = 300A I F = 150A IF = 75A
trr - ( ns )
200
IRRM - ( A )
VR = 7 20 V T J = 1 25 C T J = 2 5C
150
100
100 50
VR = 7 2 0 V TJ = 1 2 5 C T J = 2 5 C
2000 0 500 800 1100 1400 1700 2000
0 500
800
di f /dt - (A/ s)
1100
1400
1700
d i f /d t - (A / s )
Fig. 15 - Typical Reverse Recovery vs. dif/dt
Fig. 16 - Typical Recovery Current vs. dif/dt
www.irf.com
7
GA150TD120U
90% V ge +V ge
V ce
Ic
10% V ce Ic
90% Ic
5% Ic td (off) tf
E off =
Vce Ic dt
t1+5 S V ce ic dt t1
Fig. 17 - Test Circuit for Measurement of ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
t1 t2
Fig. 18 - Test Waveforms for Circuit of Fig. 17, Defining Eoff,
td(off), tf
G A T E V O LT A G E D .U .T . 10% + V g +V g
trr Ic
Q rr =
Ic dt dt id dt Ic
tx
trr
tx 10% V c c Vce 10% Ic 90% Ic D U T V O LT A G E AND CURRENT Ipk Ic
10% Irr Vcc
V pk Irr
Vcc
D IO D E R E C O V E R Y W AVEFORMS td(on) tr 5% V c e t2 Vce Ic dt E on = V c e ieIc dt Vce dt t1 t2 D IO D E R E V E R S E RECOVERY ENERG Y t3 t4
E rec =
Vd Ic dt V d idIc dt Vd dt
t3
t4
t1
Fig. 19 - Test Waveforms for Circuit of Fig. 17,
Defining Eon, td(on), tr
Fig. 20 - Test Waveforms for Circuit of Fig. 17,
Defining Erec, trr, Qrr, Irr
8
www.irf.com
GA150TD120U
V g G A T E S IG N A L D E V IC E U N D E R T E S T C U R R E N T D .U .T .
V O LT A G E IN D .U .T .
C U R R E N T IN D 1
t0
t1
t2
Figure 21. Macro Waveforms for Figure 17's Test Circuit
L 1000V 50V 600 0 F 100 V Vc*
D.U.T.
RL= 0 - 600V
600V 4 X IC @25C
Figure 18. Clamped Inductive Load Test Circuit
Figure 22. Pulsed Collector Current Test Circuit
www.irf.com
9
GA150TD120U
Notes:
Repetitive rating; VGE = 20V, pulse width limited by
max. junction temperature.
See fig. 17 For screws M5x0.8 Pulse width 80s; single shot.
Case Outline -- DOUBLE INT-A-PAK
Dimensions are shown in millimeters (inches)
WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331 EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020 IR CANADA: 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 2Z8, Tel: (905) 475 1897 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111 IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086 IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 0316 Tel: 65 221 8371 http://www.irf.com/ Data and specifications subject to change without notice. 3/98
10
www.irf.com


▲Up To Search▲   

 
Price & Availability of GA150TD120U

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X